
rtgmaster_user

rtgmaster_user ii

COLLABORATORS

TITLE :

rtgmaster_user

ACTION NAME DATE SIGNATURE

WRITTEN BY August 5, 2022

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

rtgmaster_user iii

Contents

1 rtgmaster_user 1
1.1 Rtgmaster.library V22.0 . 1

1.2 RtgMaster Library V22.0 . 1

1.3 RtgMaster Library V22.0 . 2

1.4 RtgMaster Library V22.0 . 2

1.5 RtgMaster Library V22.0 . 3

1.6 RtgMaster Library V22.0 . 3

1.7 RtgMaster Library V22.0 . 4

1.8 RtgMaster Library V22.0 . 6

1.9 RtgMaster Library V22.0 . 7

1.10 RtgMaster Library V22.0 . 7

1.11 RtgMaster Library V22.0 . 20

1.12 Rtgmaster.library V22.0 . 21

1.13 Rtgmaster.library V22.0 . 22

1.14 Rtgmaster.library V22.0 . 22

1.15 Rtgmaster.library V22.0 . 23

1.16 Rtgmaster.library V22.0 . 23

1.17 Rtgmaster.library V22.0 . 24

1.18 Rtgmaster.library V22.0 . 24

1.19 Rtgmaster.library V22.0 . 25

1.20 Rtgmaster.library V22.0 . 25

1.21 Rtgmaster.library V22.0 . 25

1.22 Rtgmaster.library V22.0 . 26

1.23 Rtgmaster.library V22.0 . 26

1.24 Rtgmaster.library V22.0 . 26

1.25 Rtgmaster.library V22.0 . 27

1.26 Rtgmaster.library V22.0 . 27

1.27 Rtgmaster.library V22.0 . 28

1.28 Rtgmaster.library V22.0 . 29

1.29 Rtgmaster.library V22.0 . 29

1.30 Rtgmaster.library V22.0 . 29

1.31 RtgMaster Library V22.0 . 32

1.32 RtgMaster Library V22.0 . 34

rtgmaster_user 1 / 34

Chapter 1

rtgmaster_user

1.1 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

User Documentation

Table of contents

Part A : About RtgMaster

Part B : Coder Docs

Part C : Supported Software

Part D : About Amiga GFX Boards

Part E : Using it

Part F : Benchmarks

Part G : c2p algorithms

Part H : History

Part I : Authors and Copyright

Part J : The Goodies

Part K : The CV64 Problem

1.2 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Normally we assume that

BytesPerRow = Width * BytesPerPixel

This is *WRONG* for the Cybervision 64 (only 64, not 3D !!!)

At least for some Screenmodes...

The LEGAL way to get BytesPerRow is using GetRtgScreenData with

grd_BytesPerRow !!! If you do not do it this way, your program

might not run on the Cybervision64 !!! Please use GetRtgScreenData !!!

I have to admit that i made the same mistake in an early version

of rtgmaster_driv.lha, i fixed it now, though.

rtgmaster_user 2 / 34

1.3 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

rtgmaster Goodies are some extra some to rtgmaster. Currently they are :

- asmconv : A program to convert 86x86 code (PC source) to 680x0 code.

You have to do some stuff manually, though, still. This is useful,

as a lot of PC Demo Sources are on the net. asmconv was written

by Nikolaus Mausz on the PC, who gave his OK for me porting it

to Amiga and including it to the rtgmaster package. NOTE: You have

have to supply the PC Sources to be converted in PC text format.

- rtggadtools : This is an rtgmaster expansion by Hans-Joerg Frieden.

It provides rtgmaster with Gadget-Functionality. It currently only

runs on GFX Boards.

- You might also have a look at the demos directory. There are a lot

of rtgmaster example sources found there.

You might be interested in downloading the rtgmaster_driver.lha, this

contains a complete rtgmaster game driver, that should (at least for a

3D Game) be enough. With this driver, you have not to bother with

library coding, you not even have to install the rtgmaster includes.

Linking object files is enough. This driver does not provide the full

features of rtgmaster, though, only enough to code a DOOM Clone with it :)

1.4 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Coder Docs

Well, as described in About RtgMaster rtgmaster.library

is a system to provide your games/demos with GFX Board Support. This

section is an introduction about how to code this.

If you think you can’t make it, even with this excellent library, please

contact me per email. I might do the GFX Board coding part for you, if

needed.

In this Docs i will describe the process of GFX Board Support in C Syntax,

but of course it works in ASM too.

1. Opening Display

2. GetRtgScreenData

3. Methods of Screen-Copy

4. Input Handling

5. Some Extra-Calls

rtgmaster_user 3 / 34

6. Support for Network-Gaming

Also, in the Goodies Directory, there is some already compiled source, that

provides a driver containing everything you might need. It already opens all

needed libraries, so those among you who are not yet familiar to the useful

concept of shared libraries, can use this driver.

1.5 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Opening Display

The Amiga Display Database is, as you probably know, organized in Screenmodes.

So the first thing you will have to do is opening a Screenmode-Requester.

RtgScreenModeReq

will do this job. You can describe the screenmodes that are interesting for

your application to the call. For example, if you want only Chunky (GFX Board)

8 Bit Modes between 320x200 and 640x480, only such modes will be listed in

the Screenmode-Requester. Have a look at the examples in the Demo Directory

for this.

Next, as the user chose a Screenmode, we have to open a Screen with this

Screenmode.

OpenRtgScreen

After the Screen is open, it has to be locked for private usage.

LockRtgScreen

Then you change the colors

LoadRGBRtg

And last, we will have to ask for the Base Address of the Video RAM, so that

we can access the Video RAM directly. If we run the application on ECS/AGA,

we will have a pointer to the Chip RAM of the Screen instead.

GetBufAdr

1.6 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

GetRtgScreenData

GetRtgScreenData is a function to examine an opened screen. It will

find out, if the Screen is Planar or Chunky, 4 or 8 or 24 Bit and many more stuff.

Well, if you only want your application on 8 Bit Chunky and AGA it is enough to

test for grd_Planar and grd_Chunky. Then you only need two display functions,

one for AGA, one for GFX Boards. This is described more detailed in the next

section. There is also a possibility to find out current mouse possition with

this call.

rtgmaster_user 4 / 34

1.7 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Methods of Screencopy

As to the methods of Screencopy, there are basically 3 sorts :

A) Using a Fastram Buffer

You render your buffer in Fastram. Then, after you completely rendered a frame,

you use a direct Video RAM access function to copy your buffer to Video RAM.

You can use GetBufAdr to find out about the Video RAM Address.

CopyRtgPixelArray

This function uses COPY_MOVE_MOVE, which is a quite fast Copy-Function. CopyRtgPixelArray

does not do any clipping checks or something like that, to get the best speed.

B) Using Doublebuffering

With Doublebuffering, both buffers are found in Video RAM, using the GetBufAdr

call. You then render to the buffers and switch to each other using

SwitchScreens

Comparing A) to B), the Fastram method has a faster rendering, because we do not

have to render over the Zorro Bus. On the other hand, Doublebuffering displays

much faster. Altogether it seems that on most WB Emulations those functions

have nearly the same speed. With future Amiga Clones using PCI Busses, probably

Doublebuffering will be the faster one. Currently (of course depending on the

engine) mostly the Fastram method is slightly faster.

C) Using the GFX Board Blitter

Most GFX Boards have very fast blitters. So (theoretically) we could render in

Video RAM and fake Doublebuffering using those Blitters using

RtgBlit.

As we again have to render in Video RAM this is usually the slowest method. But

well, it is faster than using AGA, still.

Now, which method should be used ? I would vote for Fastram Buffer, personally,

but additional support for the other two, especially DoubleBuffering, might be

interesting. It depends much on the hardware, if Fastram Buffer or Doublebuffering

is faster. On some WB Emulations (Picasso96 for example) there is no Doublebuffering

at all.

Now, which Memory-Copy-Functions should be used for Fastram-Buffer ?

A very easy, and also fast solution is COPY_MOVE_MOVE, that is using the

rtgmaster call

CopyRtgPixelArray

It bases on

move.l (a0)+,d0

rtgmaster_user 5 / 34

move.l (a0)+,d1

move.l (a0)+,d2

move.l (a0)+,d3

move.l d0,(a1)+

move.l d1,(a1)+

move.l d2,(a1)+

move.l d3,(a1)+

The usual implementation of this function needs the Width divisible by 64. rtgmaster

uses this function, if possible, else it uses simple Longword-Copy.

An alternative would be COPY_MOVEM_MOVEM, which works like :

movem.l (a0)+,lotsofregisters

movem.l lotsofregisters,(a1)

movem.l (a0)+,lotsofregisters

movem.l lotsofregisters,$20(a1)

movem.l (a0)+,lotsofregisters

movem.l lotsofregisters,$40(a1)

There is a third version, called FCOPY. Fcopy has some problems, though. It uses the

68040 command move16 and because of that only works on 040/060 machines. Additionally,

it has some requirements:

- X Offset has to be divisible by 16

- Bytesperline has to be divisible by 16

- Source and Destination Address have to be divisible by 16

The problem is that the Video RAM Base Address of a screen is only on some GFX Boards

divisible by 16. So FCOPY will only work with some GFX Boards. If it is supported,

it should be only OPTIONAL. Else the game won’t run on the Cybervision64, for example.

Asides from that problems, FCOPY is the fastest possible method.

Of course there exist lots of variants of the three functions.

Now, one more theme : What about AGA Support ?

For AGA, of course, you can’t use CopyRtgPixelArray or one of the other listed functions.

One solution is using

CallRtgC2P

This function calls CopyRtgPixelArray for GFX Boards, for ECS/AGA it calls a c2p algorithm.

The problem is, for handling asyncrhone c2p it has to do some signaling stuff, which slows

the function down. So, if you want to handle ECS/AGA through rtgmaster (instead of doing

native AGA Support), the best would be to check, if there is a Chunky or a Planar Screen,

and use CallRtgC2P only for the Planar Screen.

Notice, that rtgAMI.library does not support the following calls correctly :

CopyRtgPixelArray

WriteRtgPixel

rtgmaster_user 6 / 34

WriteRtgPixelArray

There was no time to finish it yet. And the GFX Board Part is probably the most interesting,

anyways. AGA can be better handled through Native AGA Support. A nice idea, of course,

is using the rtgmaster Screenmoderequester to find out if Native AGA Support should

be launched or the GFX Board code (simply check with GetRtgScreenData).

1.8 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Using rtgmaster, there are several possible methods to do the Input Handling.

- Accessing the Hardware, of course.

- Using an InputHandler

- Using the RDCMP Port of the RtgScreen

I myself usually don’t access the hardware directly, so i created the RDCMP Port (after

i did not like the results of MouseEvents created by the Input Handler... they

got lost sometimes).

To use the RDCMP Port you have to get some information using

RtgInitRDCMP

This function initializes some stuff and returns you an RDCMPData structure. This structure

contains :

A Messageport (you better do not use it).

A 1<<mp_Signal (checking the signal and after this Wait-ing is the fastest method under

Intuition to get Input Events, but i found out that under rtgmaster direct polling is

much faster. In fact, checking the signal gave me fps drops sometimes).

The fastest RDCMP Message-loop is :

while(!end)

{

while (imsg=GetRtgMsg(RtgScreen))

{

if (imsg->Class==IDCMP_RAWKEY)

{

RtgReplyMsg(RtgScreen,imsg);

...

}

else if (imsg->Class==IDCMP_MOUSEBUTTONS)

{

RtgReplyMsg(RtgScreen,imsg);

...

}

rtgmaster_user 7 / 34

}

...

}

With this loop you won’t get fps drops. You have to include intuition/intuition.h (or .i),

as i used some of the Intuition constants. rtgmaster only recognizes RAWKEY and MOUSEBUTTON

Events using RDCMP.

In the RDCMPData you will find something else interesting : Two variables that contain a

POINTER to the current Mouseposition. Not the Mouseposition itself, but a POINTER to it.

This is a bit faster than using GetRtgScreenData. Not much though, but this is for the

optimizers among you :). Have a look at the Autodocs for more information.

1.9 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Some Extra-Calls

rtgmaster supports additionally to the already mentioned :

- Text/Font Support (slow, though, it does not directly access the hardware)

- Changing Mousepointers (does not work for EGS/Picasso II Native)

- Networking Support

- GFX Board Blitters

- Linedrawing

- and some more minor stuff

1.10 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

TCP/IP for Newcomers

This section is for people who want to add TCP/IP Support

to their games using rtgmaster.library, but do not know

anything at all (or just not enough) about TCP/IP to do

it. I want to add at the beginning, though, that current

rtgmaster network support really does not do much checking

for package loss. It was never tested with anything else

then example programs on local networks. If you want

professional network support, you might have a look at the

AMarquee.library. This library is better suited for it.

rtgmaster, after all, is a GFX library... but for most

cases it should do the network job, also...

1. The Basics - How does it work ?

rtgmaster_user 8 / 34

==================================

There are a lot of networks out there... Ethernet, Tokenring,

ISDN, modem, Nullmodem,... all of those have different hardware,

different package sizes, different protocols. Therefore IP was

invented, a protocol, for which a driver exits for probably

ALL existing networks.

On the primary protocol IP two new protocols (TCP and UDP) were

invented that are better than IP for transferring data.

TCP and UDP use IP, but support some more things (for example

errorhandling...).

TCP is a "connection oriented" protocol, you simulate something

like a phone connection with it. UDP is a "connectionless" protocol,

you simply send the data, and somewhen, they will probably arrive somewhere.

UDP is faster, but you are only allowed to send VERY short packages,

and you nearly do not have any errorchecking at all.

This is the first version of rtgmaster.library that supports UDP.

I can tell you, for YOU it is only a different constant (SOCK_DGRAM

instead of SOCK_STREAM), for ME it was a lot of work, as UDP really

works quite DIFFERENT than TCP... but well, here it is... if

you want to use UDP (if you are coding an action game, you SHOULD

use UDP, as TCP is a bit too slow for an action game...), be sure

to read the chapter about UDP in this document...

Now... we have some systems... on the systems there are running

some applications. What do we want to connect? The Systems ? No,

we want to connect certain APPLICATIONS on the systems.

An Example :

On the system 194.55.101.26 is running an application called

CircleMUD (a TCP/IP based game). On 194.55.101.26 a lot of other

stuff is running too, so CircleMUD is given the number 4000.

This number is called a PORT. With the PORT we can specify,

which application on a system we want to connect to.

If a player wants to play CircleMUD (i ported version 3.0 of

it to Amiga just recently, BTW... :)), he has to connect

to the SERVER 194.55.101.26 PORT 4000. The application running

on HIS system is only a CLIENT.

Then all CLIENTS send there data to the SERVER, and the SERVER

calculates some things with that data (who hits whom ? :))

and sends back some data to the CLIENTS. So, if you want to

build a network with, lets say 12, players playing a game, you

rtgmaster_user 9 / 34

run the CLIENT on each of those systems and on one of the

(the fastest one, probably...) additional, the SERVER.

If you only want to code a game playable for 2 players (2 connected

systems...) there is another possibility. A CLIENT on one system,

a SERVER on the other one. The Server sends data to the CLIENT, then

the CLIENT sends data to the SERVER. Both display on the screen

what the other guy is doing, and want data once more... for only

2 players, we do not need two Clients, as then the server can do

Client job too... for more than 2 players that would be too complicated.

2. Enough of the theory - i want to code

==

Rtgmaster.library up to now only supports the "One Client - One Server"

method. The method "One Server - Lots of Clients" will be added to it

as soon as possible. The following explanations are mostly needed

for both methods, though... I am using C syntax, but of course it

works in ASM too... C is just more easy to understand by most

people... BTW, a "ready-to-compile" Example is in the Demo

Directory of this package... play around a bit with it,

before you try it on your own... :) (P2PServ.c and P2PClient.c)

a) How do i implement a Server

==============================

- You need the port number at first. In

this example, we take 3008 as port-number.

- Open the bsdsocket.library. That could not be

done inside rtgmaster.library, because of some

structural problems of AmiTCP.

struct Library *SocketBase=0;

SocketBase=OpenLibrary("bsdsocket.library",3);

It is REALLY called bsdsocket.library, not

socket.library, even if the file in libs: might

be called socket.library !!!

- Declare : struct RTG_Socket *sock;

- Call :

sock = OpenServer(SocketBase,3008,SOCK_STREAM,0);

SocketBase is the LibraryBase of bsdsocket.library,

that you HAVE to provide. 3008 is the port on which

the Server will run (the Server knows its one

IP Address, therefor it does not have to be provided).

SOCK_STREAM and 0 are just some constants. If you use

rtgmaster_user 10 / 34

SOCK_STREAM, you will get a TCP connection. If you

use SOCK_DGRAM instead, you will get a (much faster,

but unreliable) UDP connection. Be sure to read the

special chapter about UDP, if you need a very fast

connection.

The returned structure is a "Socket". A Socket is

some stuff TCP/IP uses to access a certain application.

Now your Server is ready to wait for a connection.

b) How do i implement a Client

==============================

- Now we need the IP number of the Server *and* the port,

on which the game is running. Let’s say, it is 194.55.101.26

and 3008. You HAVE to give the same port number for Server

and Client, or you might get strange results or even crashes.

- Open the bsdsocket.library like for the server.

It is REALLY called bsdsocket.library, not

socket.library, even if the file in libs: might

be called socket.library !!!

- Declare : struct RTG_Socket *sock;

- Call :

sock = OpenClient(SocketBase,"194.55.101.26",3008,SOCK_STREAM,0);

SocketBase is the LibraryBase of bsdsocket.library,

that you HAVE to provide. 3008 is the port on which

the Server will run (the Server knows its one

IP Address, therefor it does not have to be provided).

SOCK_STREAM and 0 are just some constants. If you use

SOCK_STREAM, you will get a TCP connection. If you

use SOCK_DGRAM instead, you will get a (much faster,

but unreliable) UDP connection. Be sure to read the

special chapter about UDP, if you need a very fast

connection.

The returned structure is a "Socket". A Socket is

some stuff TCP/IP uses to access a certain application.

Now your Client is attempting to connect to your Server (Yes, it

is already trying to... now call of connect() needed, like in

AmiTCP :) And no call of socket, no damned sockaddr_in to

configure and all that complicated stuff... everything done

by those two functions :))

c) How do i initialize the connection between Server and Client

rtgmaster_user 11 / 34

===

This is the "One Server - One Client scheme", as it is currently

the only one supported by rtgmaster.library, anyways. This will work

a bit different with the "One Server - Several Clients" scheme,

but i will add another paragraph that explains this, as soon as it

is finished.

- Now we have to think... do we want "Blocking" or "Nonblocking"

data transmission ? If we have take "Blocking", an application

(Client or Server) that is currently transmitting data, WAITS

until it gets its data, EVEN if the other side does not send

the data up to now. Not very useful for a game, especially an

action game.

Therefor, nonblocking exists. If a application is "nonblocking"

and does not get its data AT ONCE, the Data Transmission call

fails (and we will try later again to get the data, after we

updated the display and similar stuff...)

Default is "Blocking". If you want to change this, do :

long mode=1;

RtgIoctl(SocketBase,sock,&mode);

Here sock is the socket, that from nowon should

be "nonblocking". mode=1 specifies "non-blocking".

You can switch back with an additional call of RtgIoctl

with mode=0 (0 = "Blocking"), but that does not make much

sense in my opinion. Simply call it with mode=1 for

"Nonblocking" Mode...

My suggestion : Use "Blocking" for the Server, "Non-Blocking"

for the Client, that seems to be the fastest (you have to

remember : "Non-Blocking" does Busy-Waiting... of course

a third solution would be only check after a certain time

interval if there are new messages...)

- IF WE HAVE TCP, we now have to Accept an incoming

connection on the server side. We do this with

sockclient=RtgAccept(SocketBase,sock);

where sock is the socket of the Server. We get the Socket

of the Client in return.

You only should do this (call RtgAccept), if this is a

TCP connection... if it is a UDP connection use sock

as Socket of the Client instead. (Sounds strange, yes,

but the main difference between them both is, that every

rtgmaster_user 12 / 34

application uses its OWN Socket, not the Socket of the

Application where it is connected to...). For UDP, you

are "connected" as soon as there is a Server and a Client

(well, UDP is CONNECTIONLESS and if a Server and a Client

want to tell something to each other, they simply send

the message on the net, without wasting time for

synchronization... that’s why UDP is faster :)

NOTE: This call WAITS, until we are connected (until the

Client tries to connect). Now we see, why method c) is of

no use for more than one Client... it can’t handle data

and wait for a new connection at the same time... for only

2 players, one using the Server Application, one the Client

Application, that is no problem, though... the RtgAccept

is only called at Game Startup...

d) How do i transfer data between Server and Client ?

===

NOTE: The calls RtgRecv and RtgSend are not longer

compatible to rtgmaster.library V6 or below ... sorry,

for that... won’t happen again... was because of the

way how UDP works...

A. Transferring data with "Blocking" Sockets

NOTE : This is for TCP... if you are using UDP,

you should be careful about some things described

in the special chapter about UDP, additionally...

len=RtgSend(SocketBase,sock,buff,0,1024);

transfers 1024 Byte between this application and its

connected application (anyway, who is the Server and

who the Client...). buff is the buffer where the data

(which is of the type ASCII String) is found :

char buff[1024];

sock is the Socket of THIS application.

In return we get, how many Bytes were in FACT

transferred. If this is not exactly the same as

the number we want to transmit, we have to re-transmit

the rest of it. If we currently can’t send ANYTHING,

the socket blocks and waits for better weather to send :)

Normally, the application should send all the stuff

at once... but "shit happens"...

NOTE: Better do not send packages larger than 1024

rtgmaster_user 13 / 34

Bytes. Some networks do not want big packages. I

know that 1024 Bytes work for sure, i do not know,

where is the limit (test it out ? :))

len=RtgRecv(SocketBase,sock,buff,0,1024);

works the same, just for RECEIVING DATA.

This time, buff gets filled...

BTW... be sure, to have a buffer with enough Bytes like

you specified :)

Some hints :

- Use a standard Package size, i suggest 1024.

- Let the Applications do a Send followed by

a Recv each time... so that you do not confuse

yourselves...

B. Transferring Data with "Nonblocking" Sockets

NOTE : This is for TCP... if you are using UDP,

you should be careful about some things described

in the special chapter about UDP, additionally...

do {} while(len=RtgSend(SocketBase,sock,buff,0,1024)<=0);

transfers 1024 Byte between this application and its

connected application (anyway, who is the Server and

who the Client...). buff is the buffer where the data

(which is of the type ASCII String) is found :

char buff[1024];

sock is the Socket of THIS application.

In return we get, how many Bytes were in FACT

transferred. If this is not exactly the same as

the number we want to transmit, we have to re-transmit

the rest of it. If we currently can’t send ANYTHING,

the RtgSend fails and tries again because of the

do-loop. (Of course, you then could do something else,

before re-entering the do-loop...

do {Something();} while(len=RtgSend(SocketBase,sock,buff,0,1024)<=0);

or something like that...

You should use <=0, not <0 or =0, to be on the sure

side...

Normally the application should send all the stuff

at once... but "shit happens"...

NOTE: Better do not send packages larger than 1024

Bytes. Some networks do not want big packages. I

rtgmaster_user 14 / 34

know that 1024 Bytes work for sure, i do not know,

where is the limit (test it out ? :))

do {} while(len=RtgRecv(SocketBase,sock,buff,1024)<=0);

works the same, just for RECEIVING DATA.

This time, buff gets filled...

BTW... be sure, to have a buffer with enough Bytes like

you specified :)

Some hints :

- Use a standard Package size, i suggest 1024.

- Let the Applications do a Send followed by

a Recv each time... so that you do not confuse

yourselves...

e) Now, whats the deal with that "One Server, Multiple Clients" ?

===

Supported starting with rtgmaster.library V5...

- Open rtgmaster.library and bsdsocket.library as usual...

- Set up Server and Client(s) as usual...

- do the RtgIoctl as usual (but do NOT call RtgAccept !!!)

Some Arguments for both modes :

Blocking :

+ If nothing happens, the Server/Client does not consume Calculation

Time

- While a Server/Client is waiting for a message you can’t do

anything else with it

Non-Blocking :

+ You can do other stuff, while the Client/Server is waiting, as it

returns immediately

- Servers/Clients, which whom does not happen much currently, do

BUSY-WAIT and this way consume a LOT of CPU Time...

- do a loop

while(1)

{

int maxsock;

struct RTG_Buff *in_buff;

struct RTG_Buff *out_buff;

...

Init_Output();

...

Calculate_Some_Stuff();

rtgmaster_user 15 / 34

Put_Together_The_Output_To_The_Sockets(out_buffer);

Init_Input();

new=RunServer(SocketBase,sock,in_buffer,out_buffer,maxplayers);

if (new) put_new_socket_in_socket_list(new);

if (new) maxsock++;

HandleInput(in_buffer);

...

}

Explanation of that not-too-easy function (but i tell you,

the Source of RunServer is even MORE complicated :))

Calculate_Some_Stuff() is a function of yourselves... here

you calculate some stuff and other things, that your game

might need...

Put_Together_The_Output_To_The_Sockets(out_buffer);

Init_Output sets the out_buff->num[] to -1. This has to be done

before the first call of RunServer.

Init_Input() sets the in_buff->num[] to -1. This has to be done

before EVERY call of RunServer.

Here you put together all messages that should be sent

to the already connected Clients (1-12 Clients at one time

are supported by RunServer).

RTG_Buff looks like :

struct RTG_Buff

{

char sock[12][1024];

int num[12];

int in_size;

int out_size;

};

In sock you can put up to 12 messages of a length of up to

1024 Bytes (you see, RunServer does not support bigger messages

than 1024 Bytes...). In num you put the socket->s value

(Surprise, surprise... it is a Integer... nothing than an

Integer behind our great Sockets...).

in_Size and out_size are the sizes of input and output

Packages (usual the same...). They should be NOT bigger

than 1024...

Maxplayers is the Maximum of Sockets connected at a time to the Server.

Can’t be bigger than 12.

rtgmaster_user 16 / 34

put_new_socket_in_socket_list(new) is a function you have to

do yourself, where you put up some sort of "Socket Database"

of the currently connected Sockets. Remember, if RunServer

returns something else than 0, it is a pointer to a RTG_Sock

structure of a new connected Client...

After that the number of connected Sockets is raised, and

then you can handle the Input. And again the loop...

BTW, if you want to disconnect a Client from your Server,

simply call CloseClient inside the loop...

I hope, everybody understood everything, if not, send me

a mail ... but it is not THAT difficult, i would say...

NOTE: Use this function with rtgmaster.library V6 at least.

The version of this function in V5 was VERY slow, as i had

some problems in coding it. Now i got help after emailing

the programmers of AmiTCP ... they showed me how to do it FAST :)

f) My Code still does not work

==============================

It simply does not behave like it should

- Did you try to connect more than 12 Clients to a Server ?

(You should NOT do that...)

- Did you set in_buffer.in_size or out_buffer.out_size to

a BIGGER value of the message actually transmitted ? (You

should NOT do that !!!)

- Did you initialize in_buff->num[] before every call of

RunServer and out_buff->num[] before the first call to

-1 each ?

- Did you open SocketBase ? (You should do that...)

- Did you install AmiTCP 4.0 on your system ?

- You might deliver data too fast for AmiTCP, if you

get messages from AmiTCP, that there would not be enough

mbufs available. Try only to do more RtgSends, if

all current ones are already handled (The Demo sources

i did, do NOT look at this... they are only short hacks...

you only will get such problems, even if you transmit

data VERY FAST, with 5+ connections at a time, BTW...

a delay between RunServer calls will fix that for

sure...)

- Did you call RtgAccept for a UDP connection ? That

does not work...

rtgmaster_user 17 / 34

I transmitted the number of a Client through a call of

RtgRecv or through RunServer, but at the Server only ZERO

arrived

- This is not possible. Simply do NOT transmit that number,

but use in_buffer->num[] instead. That is just the number

you want :)

My code just is too slow

- Try calling RtgIoctl, shortly after OpenServer/OpenClient.

But only call it ONCE, it is CPU intensive.

- Use 1024 Byte Buffers, nothing smaller.

This does not help

- TCP/IP with a *lots of Clients* is CPU intensive. RunServer

just makes the best out of it. If it is still too slow, try

timing it and only call it every 10th loop or something like

that... if still too slow, use the faster "One Server-One Client"

method... but, one note, One Server and up to 4 Clients should

be okay...

g) Is there an easier way to support AmiTCP

===

There is telser.device, that emulates a serial connection through

TCP... it is NOT possible to do a "One Server - Multiple Clients"

Method with telser.device, only Point-To-Point, also it might

be slower than the direct support method... on the other side,

to implement it, you just use serial.device code (just use

telser.device instead of serial.device, and connect with

atdtIP-Number or something like that...). telser.device is

on Aminet... but as i said, maybe slower, and only 2-systems-connections,

and additional, only support for Modem/Nullmodem-Connections,

while rtgmaster.library supports ALL sorts of TCP/IP hardware...

h) Special Info about UDP

==========================

UDP is the connectionless protocol of AmiTCP (yeah, now we do

AmiUDP :)))). If you use it (you SHOULD use it for action games,

as TCP is a bit too slow for those... for strategy games, probably

TCP is fast enough...)

What difference does it do for me, if i use UDP instead of TCP ?

--

Well, UDP is connectionless and unreliable. That is : If you send

package A, then package B, then package C, you have NO guarantie

rtgmaster_user 18 / 34

that they will arrive in the same order... data package C might

arrive first...

Also, sometimes a package gets lost... UDP does not do anything

like errorchecking or "I want this Package again". It simply says

"A Package lost? So what !!!" So if you want to be SURE, that a

package arrived, check the return code of RtgSend and resend it,

if something got wrong (or do it the UDP way : Throw the package

away, as it is now old stuff anyways... will probably be true for

action games anyways...)

Now : The most important thing to know about UDP, the other

(minor) differences after it...

==

Note : This is only for UDP ... this problem does not appear for

TCP !!! (and even for UDP it only happens for very BAD connections...)

There is ABSOLUTELY NO guaranty that RtgSend REALLY will deliver a package

of data. Because of a bad connection the package might be dropped, and to

ensure fast transmission, the package is not resent, and there are no

ACKs... for most data (that probably will come at a very fast rate for an

action game...) it does not matter if one package comes or not, but if you

have some data that HAS to arrive, here are possible methods to ensure this :

1. Method :

Use TCP. TCP resends packages that did not arrive (you can use TCP *and*

UDP, if you want, TCP for some packages, UDP for others...)

2. Method :

1) Send the package

2) On the other side, send an ACK back ("yes, i received it"). Of course

the ACK might be dropped, too... if there does not come an ACK in

a certain time, resend the package.

3) if the ACK arrived, acknowledge the ACK. (Just for the case, that only

the ACK got lost...). If the ACK is not ACK’d in a certain time, we

will timeout. If we still receive old packages (because of ACK

of an ACK being dropped...) simply tell the other side

not to resend anymore with a similar mechanism.

This is exactly, what TCP does...

well, probably a TCP *and* a UDP channel at the same time is better...

===

And now, after the MOST IMPORTANT difference, the minor stuff...

DO NOT CALL RtgAccept !!! RtgAccept is not needed for UDP (if it

detects a UDP connection, it gives you an error code...)

rtgmaster_user 19 / 34

You can use RunServer for multiple Clients - One Server, though... :)

Another NOTE : UDP gives you even more speed, if you send SMALL

packages... the maximum size again should be 1024 Bytes... like

for TCP... (i did not find in my docs for sure, if it is 1024 or

1500... both values were mentioned... but as it is one of them for

sure, i took the save way (maybe one is the number for UDP, one for

TCP... anyways, with 1024 Bytes Max., it works... of course, you

might use something like 64 Bytes for UDP or such for optimal speed...)

URGENT NOTE if you have problems understanding how UDP works :

- For TCP you always used the Socket of the Application to that

you were CONNECTED to (for example RtgSend(Socket,...)).

- For UDP you always use your OWN socket for RtgSend !!!

If you have multiple sockets, you will have to use that new

parameter of RtgSend/RtgRecv to say/find out to which socket

you are speaking...

What changes in THE CODE ?

- If you have packages that are NOT ALLOWED to be

dropped, you will have to send them with TCP, or

you have to do some tricks with ACKs and Timeouts

(see above...)

- SOCK_DGRAM instead of SOCK_STREAM

- RtgAccept is NOT called. You can transfer data,

as soon as OpenServer and OpenClient are called.

- Multiple Clients are possible with only the basic

scheme, without using RunServer (in fact, the UDP

version of RunServer is not implemented up to now...)

- For receiving you do

struct sockaddr_in *si;

rval=RtgRecv(SocketBase,sock,buf,si,len);

instead of what was shown above.

After that you can find out the IP Address of the Sender with

char *ip;

ip=RtgInAdr(SocketBase,si);

The ip address will be in the form "194.55.101.26", for example...

With the help of this call, you migh implement "One Server - Multiple

Clients" through UDP. But Note: It can’t differentiate multiple Clients

running on the same machine. For those, it does broadcasting...

- For sending you do

rtgmaster_user 20 / 34

struct sockaddr_in *si;

si=GetUDPName(SocketBase,si);

rval=RtgSend(SocketBase,sock,buf,si,len);

instead of what was shown above. You provide your IP Address for the

receiver this way.

BTW, GetUDPName only works for UDP. For TCP it returns 0.

- You will have to check RtgRecv/RtgSend return codes FOR SURE, as

packages might arrive in different orders or not at all. If

you get back, that not everything was received/sent, resend it !!!

An easier way for "One Server - Multiple Clients" will come later,

as soon as i changed the RunServer call to work with UDP (up to now

it does not work with UDP).

If you have still questions about UDP (well, it is a bit more complicated

than TCP, check out the examples or write me a mail...)

1.11 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Welcome to the rtgmaster.library.

There are a lot of Graphics Systems on the Amiga. There is OCS. There is

ECS, there is AGA. There are a lot of Amiga Graphics Board Standards, the

most famous of them being CyberGraphX.

The problem of the Amiga in the last years was, that the hardware was

ahead of the software, especially as to games. There was powerful hardware

to be found, but nobody used it. The guys who created games and demos still

stuck with AGA, the guys who created the Boards did not know anything about

Games.

RtgMaster is a link between the different systems, but it is more than this.

RtgMaster is a system specifically dedicated to game/demo-coding on GFX Boards.

The System includes high-speed GFX Board Support, and also partially ECS/AGA

Backward-Compatibility. The system runs parallel with any existing WB Emulation.

So you can use it, anyways, if you have installed CyberGraphX, Picasso96, EGS

or what else. And it is even more. For developpers there exists special support,

so that they can order a rtgmaster driver or rtgmaster adaption of their game,

if they do not want to bother with the GFX Board Coding part themselves.

What does this mean for you, the user ? Simply install the rtgmaster libraries

and enjoy playing the next generation of Amiga Games. To install it, simply run

the installer script. This will install rtgmaster.library to your system, also

some sublibraries, for the different display systems.

rtgmaster_user 21 / 34

The following projects support rtgmaster (some of them are still unfinished).

Note, that not all of them support the Original Picasso II Software, as the

rtgmaster driver for this WB Emulation is not fully done. This is due to

limitations of the Picasso II Software. Under CyberGraphX, a Picasso II works

fine, though.

Before you start i suggest you read the sections about supported software and

about Amiga GFX Boards, to find out, if your favourite game has a rtgmaster

driver (probably no, up to now) and if your GFX Board is supported (mostly yes).

1.12 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Name Firm or Group Genre

===

Genetic Species Vulcan Software DOOM-Clone

Genetic Species is a very fast-running DOOM-Clone that supports GFX Boards

through rtgmaster.library and AGA through native AGA code. There is an

old demo on Aminet, that does not yet support GFX Boards. A new Demo should

soon appear.

For more information about this game, i suggest having a look at the new

Screenshots on the homepage of Vulcan Software.

Cold Blood Vulcan Software AB3D II Clone

Cold Blood is a yet to appear DOOM-style game that will blow AB3DII away.

It supports GFX Boards through rtgmaster, AGA through native AGA code.

WheelsOnFire Prolixity 3D Racing Game

Up to now rtgmaster support of this game is not yet done, but i am in

talks with the authors. A Demo of this game is on Aminet (only for AGA).

The authors currently enhance the 3D Voxel Engine to a higher resolution,

and in this process probably rtgmaster-Support will be added, to support

GFX Boards. AGA will as always be done through native AGA code.

Phoenix ??? Privateer Clone

GFX Board Support for Phoenix is still being considered, but if it arrives,

it will probably be through rtgmaster. AGA Support is native AGA, as always.

Privateer is a PC Space Game similar to Wing Commander. Phoenix is a Clone

of it. The game has still to arrive.

AmigaQuake Digital Corruption Quake Port

AmigaQuake is (was) an inofficial Quake Port to the Amiga. I am not the

programmer, so please do not try to discuss the legality of this project

with me. And no, i don’t have an executable of AmigaQuake that i can give

rtgmaster_user 22 / 34

you. The later versions of AmigaQuake use (AFAIK) my rtgmaster.library.

After what i heard the project is dead now, because of legal problems.

There are some more projects in progress, mostly Shareware stuff. It even

might be possible, that there will appear a rtgmaster driver for one of the

AmigaDOS Clones AROS or p-OS in the future, but this is yet to be decided.

PowerPC-enhanced versions of rtgmaster are already planned.

1.13 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

To get information about supported WB Emulations please click on

the links.

CyberGraphX

CyberGraphX 3

Probench 3

EGS

Picasso II Native

Picasso96

Retina WB Emu

Graffiti

ECS/AGA

Other hardware

1.14 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

CyberGraphX 2

CyberGraphX 2 is probably the most used WB Emulation for Amiga GFX Boards.

It is one of the best WB Emulations out there, but it lacks specific support

for games. rtgmaster fills that gap. rtgmaster runs together with all CyberGraphX

Boards that run NON-SEGMENTED. You might wonder what that limitation is about.

The Commodore A2410 Board for example is a segmented Board. Segmented Boards

lack the feature of Direct Access. Most Game Authors use Direct Access in their

Games, so supporting those Boards would make no sense. Direct Access is much faster

than all other methods, anyways. It might be possible that the Domino Board is

also segmented. I do not know this, so i can’t tell you, if rtgmaster supports

the Domino or not. All other CyberGraphX Boards i know of are non-segmented.

CyberGraphX 2 Support needs libs:rtgmaster.library, libs:rtg/rtgCGX.library and

your CyberGraphX 2 Software installed. Installation is done by the Installers of

RtgMaster and of CyberGraphX.

rtgmaster_user 23 / 34

1.15 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

CyberGraphX 3

CyberGraphX 3 is the most recent version of CyberGraphX, but up to now it does

not support any other boards than the Cybervision 64 and the Cybervision/3D.

RtgMaster always supports all NON-SEGMENTED CyberGraphX 3 Boards.

It is one of the best WB Emulations out there, but it lacks specific support

for games. rtgmaster fills that gap.

You might wonder what that limitation about NON-SEGMENTED is about.

The Commodore A2410 Board for example is a segmented Board. Segmented Boards

lack the feature of Direct Access. Most Game Authors use Direct Access in their

Games, so supporting those Boards would make no sense. Direct Access is much faster

than all other methods, anyways.

CyberGraphX 3 Support needs libs:rtgmaster.library, libs:rtg/rtgCGX.library and

your CyberGraphX 3 Software installed. Installation is done by the Installers of

RtgMaster and of CyberGraphX.

1.16 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Probench 3

Probench is probably one of the first WB Emulations that exist at all. It is only

used by the Boards Domino, Merlin and Merlin II, so it is quite an exote. Starting

with Probench 3, there is some sort of partially-working CyberGraphX Emulation.

RtgMaster runs together with Probench 3, if you have at least the Upgrade Package 7

running. Earlier versions might work or not, but probably not. I do not know, if

rtgmaster runs together with the Domino, as the Domino might still be a segmented

GFX Board. Segmented Boards are old technology, that is not compatible with the

way most games are coded. Because of that rtgmaster does not support them. If the

Domino runs in Non-Segmented Mode, rtgmaster will support it, of course.

rtgmaster does not run with Probench 2 or earlier.

Probench 3 Support needs libs:rtgmaster.library, libs:rtg/rtgCGX.library and your

Probench 3 Software installed. Installation is done by the installers of RtgMaster

and of Probench.

rtgmaster_user 24 / 34

1.17 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

EGS

EGS was a quite popular WB Emulation at its time. To tell the truth, the whole

rtgmaster project started with EGS. rtgmaster needs at least EGS System 6, the

most current version done by Viona Developpment is EGS System 7. EGS was dropped

by Viona later, and someone else took it up, releasing a new version called

EGS Plus. I never really tested rtgmaster with EGS Plus. I do not know if it works.

If someone knows, tell me, i do no longer own a EGS Board.

rtgmaster.library supports the following EGS Boards (not all of them tested, some

of them might be segmented Boards, and rtgmaster never works with segmented Boards) :

Piccolo

Piccolo SD64

EGS Spectrum

Rainbow 3

Rainbow 2

EGS 110 from GVP

bsc Graffity (do not confuse with Graffiti, this is something else)

You might wonder, why rtgmaster does not support segmented Boards like the A2410.

This is because those Boards lack a special feature needed for game programming.

Segmented Boards are only the very old boards, anyways.

I heard somewhere, that the old Board Visiona also used EGS. rtgmaster might

run on it or not. If someone still uses this Board, please contact me.

Under EGS it is possible, that the mousepointer of an rtgmaster application starts

looking strange. Don’t worry. This is normal, because of an unfinished part in

the driver. Asides from that, rtgmaster runs fine under EGS.

EGS Support needs libs:rtgmaster.library, libs:rtg/rtgEGS.library and your EGS

Software insralled. Installation is done by the Installers of RtgMaster and EGS.

1.18 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Picasso II Native WB Emulation

The Picasso II Native WB Emulation is one of the first WB Emulations. It is only

available on the Picasso II and the Picasso II+ Boards. There is limited rtgmaster

Support for this WB Emulation, limited only, because this WB Emulation does not

support all rtgmaster features. Especially the Keyboard-Functions of rtgmaster

are not supported. So probably most Software won’t support this sublibrary.

rtgmaster_user 25 / 34

Please consider updating to CyberGraphX or Picasso96. These WB Emulations have

full rtgmaster Support.

Picasso II Native Support needs libs:rtgmaster.library, libs:rtg/rtgPICA.library

and your Picasso II/II+ Native Software installed. Installation is done by the

installers of RtgMaster and of the Picasso Software.

1.19 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Picasso96

Picasso96 is a new WB Emulation standard. With the exception of the Cybervision/3D

nearly all Boards have a Picasso96 Driver. The Picasso96 is still quite Beta, though.

Picasso96 does not have a certain feature called "DoubleBuffering" currently (but the

developpers said this would be done soon). Asides from that all rtgmaster code

runs fine on the Picasso96. That DoubleBuffering does not run is not that much of

a problem, as all Games using rtgmaster of that i know let you choose, if you

want to use DoubleBuffering or not.

Picasso96 Support needs libs:rtgmaster.library, libs:rtg/rtgCGX.library and your

Picasso96 Software installed. Installation is done by the Installers of RtgMaster

and of Picasso96.

1.20 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

The Retina WB Emulation

The Retina WB Emulation was used by the Boards Retina BLT Z3, Retina Z2 and

by the DraCo. There are now CyberGraphX Drivers for Retina BLT Z3 and the

DraCo, though. Retina WB Emulation is not supported by rtgmaster. If someone wants to

do support for it, i could give him developper docs to support it, though. (A new

rtgmaster sublibrary had to be created, this takes about 1 week of coding, maybe

less. Myself i can’t do it, as i do not have a Retina that would be needed for testing).

rtgmaster in no way supports the Retina Z2, as the Retina Z2 is a segmented Board.

Segmented Boards miss some features needed for Game programming. They are quite

old boards, anyways.

1.21 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

The Graffiti

There is not yet Graffiti Support for rtgmaster. It is planned, though. My problem is,

i do not have a Graffiti, and it would also not run on my system, as i do not have

a 15 kHz monitor (i use 15 kHz modes through a internal flickerfixer). If someone

wants to help with the Graffiti Support, please contact me.

rtgmaster_user 26 / 34

1.22 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Other Hardware

There are some other very old Boards. For example the Opalvision or the Firecracker.

RtgMaster does not support them. Most of these Boards not even have a real WB Emulation,

only some special drivers for some programs. A RtgMaster Driver might be possible

for some of those Boards, so if you have such a Board and would be interesting in

doing a driver, please contact me. Most of those Boards probably are segmented Boards,

though, and segmented Boards miss some feature needed for fast Amiga GFX Board Games.

In the future there will be some new Boards not yet listed here, that WILL be supported.

There will be a special version of the Picasso IV that will run through PCI on a special

Turbo-Board that ships with a PCI slot. This is one of the next Boards that will be supported.

As this Board probably uses Picasso96, there won’t be a problem, probably.

Also, after Phase 5 announced a CAIPIRINHA Board for the Cyberstorm PPC, there might be

CAIPIRINHA Support for rtgmaster in the future. But as i do not know much about

CAIPIRINHA yet, i can’t tell.

1.23 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

ECS/AGA

rtgmaster supports also ECS/AGA. The problem is only, that the fastest possible function

of rtgmaster, CopyRtgPixelArray, won’t run on ECS/AGA, as it assumes a chunky display. Only

the slower function CallRtgC2P will support it. But with some minutes work, a rtgmaster

program runs on ECS/AGA with no problems. Most rtgmaster programs feature native AGA Support,

that is probably faster, though. About the ECS Support there is a special problem. If a

rtgmaster program uses 256 colors, it principially runs on ECS, but 192 of the colors are

simply ignored and get Black. So the result might look strange on ECS.

ECS/AGA support needs libs:rtgmaster.library and libs:rtg/rtgAMI.library (installed by the

rtgmaster installation script). Also it needs a monitor driver like PAL or NTSC in the

devs:monitors directory. Without this you won’t get any ECS/AGA Screenmodes.

1.24 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

To use rtgmaster.library, simply start an executable using rtgmaster.library.

You can then choose a Screenmode. If you save it, it will be saved to the local

Directory, and the next time you start a rtgmaster program from this directory,

the Screenmode-Requester will only popup, if you press SHIFT while starting the

program. If you have any problems using rtgmaster, please check out the section

about Amiga GFX Boards, to check out, if your GFX Board Software is installed

correctly.

rtgmaster_user 27 / 34

1.25 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Benchmarks and Demos

Provided demos are in the Demos Directory.

These are :

flame

Flame is a Plasma effect. It runs on all Systems. It is coded nearly completely

in C (the main-Plasma-Loop is in ASM).

flamme

Flamme is another Plasma Effect. It runs on all Systems, but it has to be

started from the Shell. It does not work from Workbench. It is coded in ASM.

Mandel

Mandel is a Mandelbrot set. It runs on GFX Board Systems. It is coded in C.

Moon

Moon is a Voxel-Graphics landscape. It runs only on systems with FPU.

It needs a Screenmode of 320x200 or 320x240 to run. It is coded nearly

completely in C, so do not expect it to be fast.

Mywolf

Mywolf is a Wolf3D style texturemapping engine. It runs on all Systems.

It is coded completely in C. The only current rtgmaster c2p with that

this demo runs is GD. As it is the only c2p, that currently supports

c2p’ing "not-Full-Screen".

There are some more demos in the developper archive. But those are mostly

not that impressive.

Benchmarks :

Flame

Flamme

Moon

Mywolf

1.26 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Benchmarks of Flame

Machine GFX System 320x200 160x120

==

A4000/030+Cybervision CyberGraphX 24 fps 30 fps

A4000/030 AGA 10 fps 10 fps

rtgmaster_user 28 / 34

A2000/030+Picasso II Picasso WB-Emu 15 fps 24 fps

A4000/040+PiccoloSD64 EGS 34 fps 63 fps

A4000/040+PiccoloSD64 CyberGraphX 34 fps 63 fps

A4000/040 AGA (020opt.c2p) 14 fps 16 fps

A4000/060+Cybervision CyberGraphX 69 fps 136 fps

A4000/060+Retina Z3 CyberGraphX 50 fps 118 fps

A4000/060 AGA 29 fps 31 fps

A4000/040 AGA (040opt.c2p) 18 fps 22 fps

A3000/030+Piccolo EGS 22 fps 30 fps

A3000/030+Piccolo CyberGraphX 22 fps 30 fps

A4000/040+Cybervision CyberGraphX 35 fps 77 fps

A2000/040+Picasso(33MHz) CyberGraphX 19 fps 50 fps

A2000/030+SD64 CyberGraphX 17 fps 26 fps

A2000/060+SD64 CyberGraphX 26 fps 77 fps

A4000/040/40MHz+Cyberv. CyberGraphX 60 fps 105 fps

68030 25 MHz+RetinaZ3 CyberGraphX 21 fps

A1200/030 50 MHz AGA 11 fps 19 fps

A2000/030 50 MHz+Picasso Picasso WB Emu 21 fps

A4000/040 25 MHz+Ret.Z3 CyberGraphX 29 fps

A4000/040 40 MHz+Ret.Z3 CyberGraphX 34 fps 90 fps

A3000T 25 MHz + SD64 CyberGraphX 22 fps

A4000/030 25 MHz + Merlin II Probench3.0 21 fps

A4000/060 50 MHz + Merlin II Probench3.0 51 fps

A3000/040 25 MHz ECS 64 colors 19 fps 23 fps

A4000/040 40 MHz+CV/3D CyberGraphX 3 37 fps 80 fps

A2000/030 25 MHz Domino Picasso96 18 fps

1.27 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Benchmarks of Flamme

Machine GFX System 320x200

==

A4000/040 40 Mhz CV/3D CyberGraphX 3 74 fps

A4000/040 40 MHz SD64 CyberGraphX 102 fps

A4000/040 40 MHz AGA 23 fps

A4000/040 40 MHz AGA (040opt. c2p) 40 fps

A2000/030 25 MHz Domino Picasso96 23 fps

rtgmaster_user 29 / 34

1.28 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Benchmarks of Moon

Machine GFX System 320x200

==

A4000/040 40 Mhz CV/3D CyberGraphX 3 8 fps

A4000/040 40 MHz AGA 6 fps

A4000/040 40 MHz AGA (040opt. c2p) 8 fps

A2000/030 25 MHz Domino Picasso96 1 fps

1.29 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Benchmarks of Mywolf

Machine GFX System 240x200

==

A4000/040 40 Mhz CV/3D CyberGraphX 3 36 fps

A4000/040 40 MHz AGA 21 fps

A2000/030 25 MHz Domino Picasso96 9 fps

1.30 Rtgmaster.library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

The History of rtgmaster.library

Version Changes

V0.1 First Alpha release (that one with the famous

Screenmode requester that contained more Bugs

than functions :))

V1.0 First Beta Version with the new Screenmode

requester. Only worked with rtgCGX.library.

V2.0 First official Aminet release of rtgmaster.library

Bug in V1.0 about it only loading rtgCGX.library

is fixed in V2.0, many bugfixes, new implemented

stuff and complete rework of the Autodocs !!!

c2p Support, new Screenmodereqeuster...

V3.0 Some Bugs fixed...

V4.0 First version with TCP/IP Support

V5.0 First version with TCP/IP Support with

rtgmaster_user 30 / 34

"One Server - Multiple Clients"

V6.0 A Major Speed enhancement for the function

RunServer. Do not use V5.0 for TCP/IP, use

V6.0... it is really MUCH faster (i throwed

out a LOT of Forbid()/Permit() Stuff, as the

programmers of AmiTCP explained me by email,

how to do this stuff without a single Forbid() :)

V7.0 First version with UDP Support

RunServer does not run with UDP yet, though...

V8.0 UDP Support finished

V9.0 Finally not-fixed-resolution c2p works (gd

and gdecs c2p are provided), due to a bugfix.

V10.0 Text/Font Support added, "Automatic ECS Support"

added (every AGA c2p supports ECS, too...)

V11.0 Expanded features of CopyRtgPixelArray

V11 did not run on some systems with Cybergraphics.library

V40.92 ... V12.0 fixed that, though...

V12.0 Added RDCMP for Input Handling

V13.0 Fixed "RtgBlit will crash under EGS with Minterm

0xc0 and willdo strange things when blitting to

Buffer 2" Bug

Removed d6/d7 Parameters of CopyRtgPixelArray

(this time it is final !!!), Recompiling/Assemblong

needed,sorry...

Fixed Installer Script and some minor Bugs

OffX/OffY parameters of CopyRtgPixelArray

implemented for rtgCGX.library and rtgEGS.library.

Sadly, rtgPICA.library still crashes for unimplemented

calls (for example RDCMP is not yet implemented for

Picasso II, only for the other three sublibs, but

the rtgPICA.library is currently in question anyways,

as some stuff is NOT POSSIBLE using that WB Emulation !!!)

BTW, does someone know how to access the VGA Registers

of some boards (information about SD64 and CV64 !!!) ?

I really would like a Mode X Support to rtgmaster, if

this is possible...

V14.0 Fixed the "Crash on some system with smr_PlanarSupport or

smr_ProgramUsesC2P =0" bug

Fixed the Screen Depth Bug with 16 Bit Piccolo SD64 Screens

rtgmaster_user 31 / 34

libs:rtgc2p is now default for c2p algorithms

SrcWidth/SrcHeight of CopyRtgPixelArray removed again, and

THIS TIME the function CopyRtgPixelArray will stay as it is

As many people use rtgmaster to convert some PC stuff to Amiga,

i included the asmconv program, that converts Intel ASM to

Motorola ASM.

V15.0 Changed rtgCGX.library, so that it runs on both CyberGraphX 2 and

CyberGraphX 3 (for Cybervision/3D Support). Still, rtgmaster.library

won’t run with cgxsystem.library versions smaller than 41.1 (41.0 had

a serious bug in the LockBitmapTagList call). rtgPICA.library now no

longer crashes, if a pointer, text or RDCMP function was called. It does

not do anything, nevertheless. rtgCGX.library MIGHT run with Picasso96

Software, maybe not, i do not know, up to now, but will test, as soon

as possible (maybe someone can tell me ?) Removed rtggadgets sources,

added RtgGadTools.library (which replaces the rtggadgets sources).

V16.0 Added flickerfree DBuffering to rtgCGX.library (only does its job

for CyberGraphX 3, for CyberGraphX 2 it is ignored, as CGX 2 can’t

REALLY do Flickerfree buffering currently). Added support for mp_sigbit

to all sublibs with exception of rtgPICA.library (yet to do), added

gamecoderhelp for game coders in goodies directory.

V17.0 Fixed bug concerning new V16.0 features of RtgInitRDCMP

Updated Autodocs&Includes. Best: Do not use V16.0 anymore,

as programs might use the new feature.

V20.0 Complete rework of the Package to make it more professional,

split into User, Driver and Developper Archive.

V21.0 Update of rtgCGX.library (bug in 15/16/24 Bit modes fixed)

Completely new Installer script, as it seems that the "Installer Example"

lha from some BBS that i used to do the first installer scripts used

copyrighted material. I removed the old installer scripts completely.

Thanks to Robert C. Reiswig for reporting. (I also offered him to

alternatively overtake the developpement of the scripts, but he did

not answer to my mail, so i had to think of something new... so i

took a whole afternoon to rewrite the scripts from the beginning...

BTW, these new Scripts now finally WORK !!!)

V22.0 Some internal changes, added section about Cybervision 64 Problem and

how to fix it, added workaround for CyberGraphX 3 R 55 Bug (Note: Doublebuffering

internal implemenation in rtgmaster might change again in the future).

Added sources for moon demo, as the author allowed me to include them now.

rtgmaster_user 32 / 34

1.31 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

Authors and Copyright

Some basic notes :

the original rtg.library was developped on an idea of John Hendrikx. He later

gave developpement to me and i made the rtgmaster.library out of it. Most work

(main library, rtgCGX.library, rtgEGS.library, rtgAMI.library, Docs)

was done by myself, Steffen P. Haeuser.

- The rtgPICA.library and the rtggad.library were done by Hans-Joerg Frieden

- Some of the examples were done by Hans-Joerg&Thomas Frieden

- The Moon Example was done by Olaf Asholz

- The Screenmode Requester was done by Wolfram Schenk

- The 680x0 to 860x0 ASM converter was done by Nikolaus Mausz

The original installer scripts were done based on some "Installer Examples" found

on different BBS systems. I was notified some weeks ago, that those "Examples" in

fact used copyrighted work of Robert C. Reiswig. I offered Robert to overtake the

developpement of the rtgmaster installer script and to notify him in the docs. As

he did not answer to my mail after over a week, i simply rewrote the installer

scripts without using those infamous examples. If i had known at the beginning, that

those "Examples" used Copyrighted material, i would never have used them. The

Uploader of the Examples Archive did not say anything about that.

User Information

rtgmaster.library is done by Steffen P. Häuser (that’s me). Some of the sublibraries

are done by other persons. I take no guarantee that it works on your system. Also i

don’t take guarantee that it not damages your system (don’t be upset, this is only

a standard disclaimer ... of course this software should work on your system, and

it won’t damage it... but to keep trouble away i included this standard disclaimer.

Basic Developper License

Developpers can include any part of this archive to their programs, as long as

the part they include is still functional. They should read the stuff below,

and do like it says. Principially, rtgmaster.library is for free, but i would

appreciate some good will to give me at least a free copy of the program using it.

Exact informations for different sorts of software are listed below.

Freeware/PD Developpers

I would appreciate being mentioned in the Credits or Docs of your program.

Asides from that you can use rtgmaster.library for free.

Shareware Developper

I would appreciate being mentioned in the Credits or Docs of your program.

rtgmaster_user 33 / 34

I would appreciate a free copy of your program, if this is ok for you.

Asides from that you can use rtgmaster.library for free.

Commercial Developper

I would appreciate being mentioned in the Credits/Docs and a free version

of your program (if this is OK for you/your publisher). I also would appreciate

some extra-bucks from your publisher, if this is OK for him. If it is not okay

for him, a free game might also be enough. Give my email to your publisher,

so that i can clear things up with him. My Email is MagicSN@Birdland.es.bawue.de.

Developper - Extra Support

If you are a Developper of a Commercial Game, want it to run on a GFX Board,

but do not want to have to bother with writing the GFX Board Part of the Code

yourselves, i can do this for you. Simply mail your specifications for the

needed functions to MagicSN@Birdland.es.bawue.de and i will do the job for you.

In this case, we should definitely speak about a free Game and some extra Bucks.

Maybe $100 or something like that. But well, this is open to discussion. But

think about it, $100 definitely will come in with the sales for the GFX Board

Version. Of course will be cheaper for Shareware programs. You might also

have a look at rtgmaster_driver.lha, which might be just what you are looking

for !!!

Well, if your publisher does not want to pay me, i probably will make the GFX

Board Version anyways, but then he is a skinflint !!!

Additional note about Copyright :

rtgPICA.library and some of the examples are done by Hans-Joerg Frieden,

Moon Demo was done by Olaf Asholz, rtggadtools.library was done by

Hans-Joerg Frieden. The 86x86 to 680x0 converter was done by Nikolaus

Mausz. The Screenmode-Requester was done by Wolfram Schenk.

Those people gave their okay to include their work to my

rtgmaster.library Package. All the rest (main library, the other three

sublibraries, and the rest as to demos, Docs...) was done by me.

In case you need my address :

Steffen P. Haeuser

Limburgstr. 127

73265 Dettingen/Teck

Germany

Tel. 07021-51787

Co-Sysop of Birdland BBS : 07021-861920/862428/862429 and other numbers

MagicSN@Birdland.es.bawue.de

rtgmaster_user 34 / 34

1.32 RtgMaster Library V22.0

The RtgMaster Library for GFX Board Using Demos/Games

c2p Algorithms

The rtgmaster c2p format is currently not optimal. It probably will

change in the future, but that should not bother the user. It is only to

the user to know, that the ECS/AGA Support currently is not speed-optimal,

because of this problems. But luckily most rtgmaster-using programs also

support native AGA Support.

Currently there are this c2p :

040 : 040 optimized, needs a 040/060 to run. Only runs in 320x200.

GD : 020 optimized. Runs in all resolution. Currently the only

rtgmaster c2p that supports c2p’ing stuff smaller than

Fullscreen.

Chunky4 : 030 optimized. On 040 and above, this c2p is the slowest one,

but on 030 it is the fastest one. Only supports 320x200.

	rtgmaster_user
	Rtgmaster.library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	Rtgmaster.library V22.0
	RtgMaster Library V22.0
	RtgMaster Library V22.0

